

Convion C250e SOE – Decarbonizing Industry by Green H₂

Convion's Solid Oxide Electrolysis technology offers a solution for decarbonizing industries by integrated hydrogen production. Convion C250e is a modular steam electrolyser system with reversible operation (rSOC) functionality, and co-electrolysis of steam + CO₂ as alternate configuration options.

Modular architecture makes possible installation of multiple C250e units in parallel for desired capacity. Each module is a separate, hot-swappable conversion unit, able to operate independently.

Benefits of hydrogen production by Convion C250e SOE include

- Premium efficiency and economy: By superior electrolysis efficiency, SOE technology offers significant reduction in energy expenditure as compared with low temperature electrolysis technologies.
- Flexibility: rSOC functionality makes possible switching the system to power generation when electricity price is high. In power generation, hydrogen, biogas, or natural gas can be used as a fuel.
- Carbon Capture & Utilization: CO₂ can be used as a co-feedstock in co-electrolysis to produce synthesis gas for industrial use in a single processing step.
- Integration: C250e system consumes industrial LP steam as a feedstock. Steam can be generated by waste heat or other zero carbon heat sources, reducing need for electrical energy.

CONVION OY Tekniikantie 12 FI-02150 Espoo Finland

+358 10 328 7370

www.convion.fi

General Specification	C250e	Unit
Power Connection		
AC connection	400	VAC
Power intake	249	kW
Steam feedstock		
Pressure	2.5–4.0 bar-g	
Temperature	200-250	°C
Flow, self-regulated	71	kg/h
Product Gas		
Hydrogen production	6.4	kg/h
Hydrogen fraction [1]	81	%-mol
Temperature	200–300	°C
Pressure	0–50	mbar-g
Sweep Air Exhaust		
Oxygen content	30–33	%-mol
Temperature	~200	°C
Energy Performance		
Electrolysis efficiency [2]	85	%-LHV
Steam consumption [3]	11.1	kg H ₂ O / kg H ₂
Power consumption	38.8	kWhe / kg H ₂

Design values have not been fully confirmed and do not imply guaranteed performance.

Installation	
Ingress protection class	IP53
Temperature [°C]	-20 +40
Altitude [m]	0 1000
Dimensions h*w*l [mm]	3120*2090*2740
Installation	Outdoor by default, indoor possible

For further information & enquiries, please contact convion@convion.fi © Convion Oy, 2023

- [1] Remaining content is steam and <1% $\rm N_{\rm _2}$ originating from internal leakages.
- [2] Product gas LHV/electrical energy input, excluding energy required for steam generation.
- [3] Utilization of steam in conversion; water recovery from product gas not accounted for.